Background Image
Menu

Latest News

Exciting new collaboration to develop fully synthetic animal-free scaffolds

26 November 2020

Exciting new collaboration to develop fully synthetic animal-free scaffolds

Three UK biotechnology companies will combine research expertise to develop fully synthetic animal-free scaffolds overcoming barriers in sustainable and scalable organoid culture in a project funded by Innovate UK.

Cardiff-based organoid company, Cellesce, Peptide 3D scaffold specialists Manchester BIOGEL and complex protein manufacturer, Qkine, have been awarded Innovate UK Sustainable Innovation Funding to develop fully synthetic, chemically-defined three-dimensional (3D) scaffolds that mimic more accurately the physiological environment in the human body to enable the manufacture scale up and improved reproducibility of patient-derived organoids.

Organoids are three-dimensional (3D) structures derived from stem cells that mimic mammalian organs.  These have transformative potential as new platforms for faster drug discovery and better model systems for determining drug efficacy and toxicity. As well as pushing forwards basic biological understanding by more accurately replicating the responses seen in humans and reducing the need for animal use in research.  However, existing methods for growing organoids predominantly rely on a 3D growth matrix extracted from mouse tumours to provide a supporting structure, this material is complex and  poorly defined, leading to challenges with scale-up and limiting use in drug discovery platforms and other applications.

This project will address these issues by combining the existing technologies of Manchester BIOGEL’s tuneable peptide hydrogel scaffolds with Qkine’s optimised high purity growth factors to build a new 3D cell culture scaffold that will mimic the natural environment of the body. Importantly, all the components will be chemically-defined and animal product free, enabling greater experimental reproducibility. Working together with the leaders in patient-derived organoid scale-up, Cellesce, they will develop and tailor these new materials for scalable and reproducible organoid culture.

Commenting on the grant award, Professor Aline Miller, CEO of Manchester BIOGEL said “I am very excited about this project – not only will we establish a new collaborative consortium, but we will also bring together our significant expertise to contribute to the development of an enabling platform technology with pressing scientific need, and with strong commercial potential.”

A successful outcome from the collaboration will lead to the development of improved human cell-based models. This addresses key scientific challenges in the stem cell and drug discovery sector, reduces animal use in research, and strengthens UK life science manufacturing to provide a long-term sustainable return on investment for UK PLC.